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Random networks of carbon nanotubes as an electronic material
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We report on the transport properties of random networks of single-wall carbon nanotubes
fabricated into thin-film transistors. At low nanotube densitiesl um ?) the networks are
electrically continuous and behave likgpdype semiconductor with a field-effect mobility ef10

cm?/Vs and a transistor on-to-off ratie-10°. At higher densitieg~10 ,um‘z) the field-effect

mobility can exceed 100 ¢tV s; however, in this case the network behaves like a narrow band gap
semiconductor with a high off-state current. The fact that useful device properties are achieved
without precision assembly of the nanotubes suggests the random carbon nanotube networks may be
a viable material for thin-film transistor applications.[DOI: 10.1063/1.1564291

Perhaps the most intriguing electronic property ofing electronic material that has potential for use in thin-film-
single-wall carbon nanotubeg$SWNTS is the high room- transistor applications to produce active electronics on
temperature mobility of semiconducting SWNESWNTS noncrystalline or compliant substrates.
that is more than an order of magnitude larger than the mo- The transport properties of the SWNT networks were
bility of crystalline Si*? This high mobility has prompted measured in a thin-film transistor geometry. SWNTs were
researchers to fabricate and study field-effect transistors igrown on a 250-nm-thick thermal oxide on a Si wédfer.
which a single s-SWNT serves as a high-mobility transportSource-drain electrodes were fabricated using optical lithog-
channef:™" Recent measurements on such devices yield #&phy and lift-off of a 150-nm-thick Ti film. The regions of
transconductance per unit channel width greater than that ¢he devices between the source-drain electrodes were then
state-of-the-art Si transistofsdowever, because of the lim- covered with photoresist and the nanotubes outside this pro-
ited current-carrying capacity of individual SWNTs, many tected area were removed by using a,&Dow jet. Finally,
s-SWNTs aligned side by side in a single device would bethe protective photoresist was removed and the devices were
required in order to surpass the current drive of a Si devicetested in a vacuum probe station.

Such precise positioning of SWNTs is beyond the capability A schematic of the device is shown in Fig. 1. The device
of current growth and assembly technology and presents @eometry was varied with the source-drain channel length,

major technological hurdle for carbon nanotube-based eled-sd» ranging from 1 to 25um and the channel width, -
tronic applications. ranging from 35 to 10Qum. Figure 1 also shows an atomic

In contrast, random arrays of SWNTs are easily pro-0rce microscopgAFM) image of a SWNT network in the
duced either by direct growth on a catalyzed substrate or b{£9ion between the source-drain electrodes. Such images and
deposition onto an arbitrary substrate from a solution of sus2FM line profiles were used to determine the diametr
pended SWNTs. If the density of SWNTs in such an array isde”S'tY(p), and length(L) of the nanotubes wherg s de-
sufficiently high, the nanotubes will interconnect and formfined as the number of SWNTs per unit area.
continuous electrical paths. Such random arrays of SWNTs ~FOr most of the devices the average nanotube lerigih,
have not previously been seriously investigated for use as
channels in field-effect transistors.

In this letter we explore the transport properties of ran-
dom networks of SWNTs and find that low density networks §
(~1 um~?) behave like ap-type semiconducting thin film
with a field-effect mobility~10 cnf/V's, approximately an
order of magnitude larger than the mobility of materials typi-
cally used in commercial thin-film transistors, e.g., amor-
phous Si. These mobility values and correspondingly gooc
electronic quality of the random SWNT network are due to a
combination of the low resistance of inter-SWNT contacts
and the high mobility of the individual SWNTs, which to-
gether compensate for the extremely low fill factor of the
network. These initial transport results are promising and
indicate that such random nanotube netwof&asily pro-  FiG. 1. (Color) (A) Schematic of the device geometry. The SWNT network
duced with no need for precision assemblyrm an interest-  is grown on top of the thermal oxide of a conducting Si substrate. Evapo-
rated titanium forms the source and drain contact pads and the Si substrate
serves as a back gat®) A5 umx5 um AFM image of a SWNT network.

dauthor to whom correspondence should be addressed; electronic maiSuch images and AFM line traces were used to measure the average nano-
snow@bloch.nrl.navy.mil tube diameter, length, and density.
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) ) ) ) _FIG. 3. Log(ls9 vs Vg atVy=0.1V for four devices from four different
FIG. 2. Electrical resistance measurements on devices with a channel WIdT@,OWthS’ corresponding to curvés—(d), each with a channel width of 35
of 90 um and channel lengths ranging from 1 to 2. The resistance  ,;m and a channel length of 16@m. The gate dependence indicates that the
measurements were made at a gate bias-8fV. The two sets of data  petworks behave like p-type semiconducting film with field-effect mobili-
correspond to two separate growths that produced nanotube densities ofihg ranging from 7 to 270 cfVs. Only the network corresponding to

(®) and 10(A) um 2, curve (a) can be gated off.

is much shorter thah gy, which means that the source-drain Roc| 18 This nonlinear scaling is an indication that the net-

current has to flow through a series of inter-nanotube Conwork is approaching the perco'ation threshold where nonlin-

tacts. Fuhreet al? have shown that the intersection of two ear effects are expected. Note that the short channel length
s-SWNTs or two metallic SWNTs forms a good electrical devices withL s~ (L) scale more rapidly with_4. In these

contact with an electrical conductaned.1 é/h and that the devices individual SWNTs can direcﬂy br|dge the source-
intersection of a metallic and a s-SWNT forms a SChOttkydrain electrodes and thus lower the resistance.

barrier with a barrier height approximately equal to 1/2 band  The above resistance data establish that the intersecting
gap of the s-SWNT. Consequently, we expect that highlySWNTs form an electrically continuous interconnected net-
interconnected SWNT arrays will be electrically continuouswork. We have measured the gate response,pfo deter-
with electronic properties that depend on the level of intermine whether the networks exhibit a semiconducting or me-
connectivity and on the electronic properties of the constitutallic behavior. Figure 3[curve (a)] plots the transistor
ent SWNTs. characteristics for the=1 um~2 network with device di-
This system of electrically connected randomly posi-mensions ofl¢=10um and W=35um. This device ex-
tioned SWNTs is in many ways analogous to the two-hibits an on-to-off ratio of~ 10° and a threshold voltage of 2
dimensional random resistor networks studied in percolationy. The observed field effect is likely a combination of two
theory®** Such resistor networks are electrically conductingeffects: the field dependence of the carrier concentration in
provided that the density of connected resistors exceeds the s-SWNTs and the gating of the Schottky barriers present
percolation threshold. In addition, the sample-to-samplext the nanotube/Ti contacts'® and at the semiconductor/
variations are vanishingly small provided that the size of thanetallic inter-nanotube contact$® The magnitude and po-
resistor lattice is large compared to the lattice spacing. In theyrity of the gate dependence indicate that the network be-
present case we estimate that the percolation threshold wiaves like ap-type semiconducting thin film. We use the
correspond approximately to the density at which the averstandard formulager=dlsg/d VgL oxlsa/ e VsdW, to define an
age distance between nanotubep’/ equals their average effective mobility for the network where,, and s are the
length, i.e.,pp~1KL)? and that the network properties will thickness and dielectric constant of the Sigate oxide. For
be relatively uniform provided that the device dimensionsthis network we findu=7 cn?/V's, which is a typical
are much larger than A¥2. Above the percolation threshold value for devices with high on-off ratio, although we occa-
there is a high likelihood that the SWNTs will intersect with sionally measure values as high as 5¢/s. For compari-
one another and form continuous electrical paths. For ouson, these values are about an order of magnitude larger than
growth conditions we have measured samples Wijtrang-  the mobility of amorphous Sigs=1 cn?/V's), a material
ing from 1 to 3um and find that for SWNT densities ex- commonly used in commercial thin film transistor
ceeding~0.3 um™ 2 the networks are electrically conducting. applications* Note that |4 reaches a minimum avg
The geometric scaling of the device resistance is showr=6 V and then increases for larger gate bias. This reversal in
in Fig. 2 which plots the log of the source to drain slope indicates that the gate potential has inverted some of
resistanc¥ versus logls) for two sets of devices corre- the electrical paths ta-type conduction. Such inversion
sponding top=10 and 1um2 The resistance data for the from p-type ton-type conduction has been previously noted
10 um~2 network scale linearly with channel length with a in field-effect measurements on individual s-SWRifsand
sheet resistance of 108¥square. The resistance data for the establishes a lower limit to the off-state current.
1 um™2 network scale nonlinearly with channel length, anda  Also plotted in Fig. 3 are data from three other devices

least squares power law fit to the data fag=5 um yields  [curves(b), (c), and (d)] fabricated using networks witp
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>3 ,LLm_Z. The linear gate dependence of the on-state cur- The limitations presently experienced with off-state cur-
rent yields field-effect mobilities ranging from 17 to 270 rents arising from parasitic metallic and/or narrow-band gap
cnt/V's. However, in each of the devices the on-to-off ratioS-SWNTs should yield to improved control over SWNT
is <10. In these devices, the increase in on-state current @owth or selective burnout of the parasitic tudesvhile
achieved at the expense of a high off-state current which ithe nanotube networks treated in this letter were formed by
curves(b) and(c) are caused by inversion tetype conduc- direct growth of the nanotubes on the surface, such networks
tion. We have observed this high off-state current in all of thecould just as easily be fabricated by depositing previously
tested devices with either high densitigs> py,, or short — grown SWNTs onto the substrate. This would allow the fab-
channel lengthsl, ¢~(L). The inversion tan-type conduc- rication of thin-film transistors without exposing the sub-
tion at low gate bias accompanied by a high off-state currengtrates to high temperatures, thus permitting a wide variety
is consistent with the behavior of a narrow band gap semiof substrates, including plastic and compliant substrates. Be-
conductor. We thus attribute the high off-state current incause several techniques have been demonstrated for selec-

these devices to continuous paths of narrow band gap ariévely converting s-SWNTs fronp to n type for complemen-
metallic nanotubes. tary logic applicationé!~?*it is likely that random networks
The band gap of a s-SWNT scales inversely with itscan be selectively converted totype for such applications
diametert® We therefore postulate that the high off-state cur-as well. Random networks of SWNTs may thus offer the
rent of dense networks is caused by continuous paths of larg@ost immediate opportunity for carbon nanotubes to impact
diameter(>2 nm) and metallic nanotubes. In such cases theglectronic applications.
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